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Ether-based electrolytes for sodium ion batteries

Ying Li,? Feng Wu,?® Yu Li, @ *2 Mingquan Liu,?° Xin Feng,? Ying Bai 2 ** and
Chuan Wu (%

Sodium-ion batteries (SIBs) are considered to be strong candidates for large-scale energy storage with the
benefits of cost-effectiveness and sodium abundance. Reliable electrolytes, as ionic conductors that regulate
the electrochemical reaction behavior and the nature of the interface and electrode, are indispensable in the
development of advanced SIBs with high Coulombic efficiency, stable cycling performance and high rate
capability. Conventional carbonate-based electrolytes encounter numerous obstacles for their wide
application in SIBs due to the formation of a dissolvable, continuous-thickening solid electrolyte interface
(SEI) layer and inferior stability with electrodes. Comparatively, ether-based electrolytes (EBEs) are emerging
in the secondary battery field with fascinating properties to improve the performance of batteries, especially
SIBs. Their stable solvation structure enables highly reversible solvent-co-intercalation reactions and the
formation of a thin and stable SEl. However, although EBEs can provide more stable cycling and rapid
sodiation kinetics in electrodes, benefitting from their favorable electrolyte/electrode interactions such as
chemical compatibility and good wettability, their special chemistry is still being investigated and puzzling. In
this review, we provide a thorough and comprehensive overview on the developmental history, fundamental
characteristics, superiorities and mechanisms of EBEs, together with their advances in other battery systems.
Notably, the relation among electrolyte science, interfacial chemistry and electrochemical performance is
highlighted, which is of great significance for the in-depth understanding of battery chemistry. Finally, future
perspectives and potential directions are proposed to navigate the design and optimization of electrolytes
and electrolyte/electrode interfaces for advanced batteries.

1. Introduction

Clean and renewable energy has intensively penetrated the
energy market to reduce the dependence on fossil energy
and meet the requirements of high energy efficiency and
environmental protection. However, among the available clean
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Unraveling Anionic Redox for Sodium Layered Oxide
Cathodes: Breakthroughs and Perspectives

Haixia Ren, Yu Li,* Qiao Ni, Ying Bai,* Huichun Zhao, and Chuan Wu*

Sodium-ion batteries (SIBs) as the next generation of sustainable energy
technologies have received widespread investigations for large-scale energy
storage systems (EESs) and smart grids due to the huge natural abundance
and low cost of sodium. Although the great efforts are made in exploring
layered transition metal oxide cathode for SIBs, their performances have
reached the bottleneck for further practical application. Nowadays, anionic
redox in layered transition metal oxides has emerged as a new paradigm to
increase the energy density of rechargeable batteries. Based on this point, in
this review, the development history of anionic redox reaction is attempted to
systematically summarize and provide an in-depth discussion on the anionic
redox mechanism. Particularly, the major challenges of anionic redox and the
corresponding available strategies toward triggering and stabilizing anionic
redox are proposed. Subsequently, several types of sodium layered oxide
cathodes are classified and comparatively discussed according to Na-rich or
Na-deficient materials. A large amount of progressive characterization tech-
niques of anionic oxygen redox is also summarized. Finally, an overview of
the existing prospective and the future development directions of sodium lay-
ered transition oxide with anionic redox reaction are analyzed and suggested.

have been taken to develop satisfactory
electrode materials to achieve high-energy
and commercialized SIBs. The appraise-
ment of the associated costs of different
components has shown that cathode mate-
rials account for the highest cost propor-
tion of 32.4%.>° Cathodes are critical
factors determining the electrochemical
performance of SIBs. Therefore, the devel-
opment of suitable cathode materials is
essential for commercial application of
SIBs. The investigated cathode materials
include layered transition metal oxides,”*!
polyanion  compounds,?*2  Prussian
blue analogues!™ and organic salts.!"”!
Among them, layered transition metal
oxides are the most promising candidates
due to their appropriate operational poten-
tials, 2D Na* diffusion channels, and the
scalable and simple synthesis. Sodium-
based layered materials can be categorised
into four main groups of P2-type, P3-type,

1. Introduction

To satisfy the ever-increasing requirements of large-scale elec-
trochemical energy storage for electronics, electric vehicles,
and smart grid, rechargeable batteries have received consider-
able attention as high-energy-density storage systems. Among
various rechargeable batteries, sodium-ion batteries (SIBs) are
regarded as the most promising alternative systems for grid-
scale storage applications due to their low cost and large and
evenly distributed contents of sodium as well as availability of
an Al foil as a current collector of both negative and positive
electrodes in them.[™ In the past few years, substantial efforts
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O2-type, and O3-type on the basis of

oxygen stacking ordering and occupation
sites of Na ions, which was first described by Delmas and co-
workers.®] The letters “P” and “O” indicate the prismatic and
octahedral coordination environment of Na ions, respectively,
and the numbers 2 and 3 represent the number of transition
metal layers in the repeated unit of stacking. Figure 1a illus-
trates the crystal structures. The P-type structure shows a better
cycling stability and rate capabilities than the O-type structure
due to its integrated structure and relatively lower diffusion
barrier. Na ions can directly diffuse between two face-sharing
trigonal prismatic sites. By contrast, O-type structures offer a
high capacity due to their high initial Na content.

Since the commercialization by Sony Company in 1991,
rechargeable lithium-ion batteries (LIBs) have achieved con-
siderable success in various applications of portable elec-
tronics and electric vehicles. For SIBs, further achieving
the large-scale application is difficult because of a low spe-
cific capacity of traditional layered oxide cathode materials,
which mainly depends on the charge compensation of cati-
onic redox reaction, such as 03-NajoCuy,,Feg3Mng 50,
(100 mAh g™)® P2-Na,;Fe;,Mn;,0, (134 mAh g™) "
03-NaFeO, (120 mAh g™).2% Consequently, the practical perfor-
mance of layered transition metal oxide materials is quite lim-
ited. To promote the practical application of SIBs, their energy
density and power density must be urgently improved. Recently,
increasing studies have focused on electrochemical performance
of layered oxide cathodes on the basis of anionic redox reactions,

© 2022 Wiley-VCH GmbH
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Interfacial-Catalysis-Enabled Layered and Inorganic-Rich SEI
on Hard Carbon Anodes in Ester Electrolytes for Sodium-lon

Batteries

Mingquan Liu, Feng Wu, Yuteng Gong, Yu Li,* Ying Li, Xin Feng, Qiaojun Li, Chuan Wu,*

and Ying Bai*

Constructing a homogenous and inorganic-rich solid electrolyte interface (SEI)
can efficiently improve the overall sodium-storage performance of hard
carbon (HC) anodes. However, the thick and heterogenous SEI derived from
conventional ester electrolytes fails to meet the above requirements. Herein,
an innovative interfacial catalysis mechanism is proposed to design a
favorable SEI in ester electrolytes by reconstructing the surface functionality
of HC, of which abundant C=0 (carbonyl) bonds are accurately and
homogenously implanted. The C=0 (carbonyl) bonds act as active centers
that controllably catalyze the preferential reduction of salts and directionally
guide SEI growth to form a homogenous, layered, and inorganic-rich SEI.
Therefore, excessive solvent decomposition is suppressed, and the interfacial
Nat transfer and structural stability of SEl on HC anodes are greatly
promoted, contributing to a comprehensive enhancement in sodium-storage
performance. The optimal anodes exhibit an outstanding reversible capacity

low-cost and high-performance anode ma-
terials is essential.l*) Hard carbon (HC) an-
odes are considered to be the most promis-
ing candidates due to their low cost and
large specific capacity.!*! However, HC an-
odes are still limited by low initial Coulom-
bic efficiency (ICE), poor rate capability,
and unsatisfactory cycling stability, which
are key indicators for commercial SIBs.’!
Numerous studies have shown that it is
far from enough to improve the above-
mentioned performances of HC anodes
only by optimizing their intrinsic proper-
ties, such as heteroatomic doping or mi-
crostructure control.[®’] Notably, regulating
HC/electrolyte interface chemistry through
building a satisfactory solid electrolyte in-

(379.6 mAh g~1), an ultrahigh initial Coulombic efficiency (93.2%), a largely
improved rate capability, and an extremely stable cycling performance with a
capacity decay rate of 0.0018% for 10000 cycles at 5 A g~'. This work
provides novel insights into smart regulation of interface chemistry to realize

high-performance HC anodes for sodium storage.

1. Introduction

Sodium-ion batteries (SIBs) have been regarded as a sustainable
technology for large-scale energy storage and smart electric grid
because of abundant resource and cost-effectiveness of Na.['?!
The development of preeminent SIBs is greatly dependent on
advanced electrode materials, and thereinto, the construction of
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terface (SEI) is the core technology to im-
prove performance of HC anodes.®®! That
is because the interfacial Na*-transfer ki-
netics and interfacial stability are highly in-
fluenced by the physicochemical properties
of the SEI,I'% which can directly determine
SIB performance.['%!!] Unfortunately, it is
difficult for HC anodes to form good SEI in
commercial ester electrolytes.

As we all know, ester electrolytes have been commercialized
due to their low cost, excellent stability, and high compatibility
with high-voltage cathodes.'”) However, ester-derived SEI (ester-
SEI) is inhomogenous with heterogenous thickness due to seri-
ous electrolyte decomposition, which insufficiently protects HC
anodes and fails to stabilize the HC/electrolyte interface, leading
to undesirable ICE and cycling stability.®13] In addition, the un-
even inorganic-organic hybrid structure with dominant organics
of ester-SEI further limits the interfacial Na* transfer, resulting
in poor rate capability.'*] In contrast, ether-derived SEI (ether-
SEI) is much thinner and more homogenous, contributing to
a better ICE.>%] The inorganic species are dominant and com-
pact in the inner layer of ether-SEI, while a small number of or-
ganic components are distributed in the outer layer, showing a
layered structure,['®'7] which is conducive for Na* transfer and
enhances the rate performance.'*18] The inorganic-rich struc-
ture with high mechanical strength can effectively protect HC
anodes for stable cycling.!'”) However, due to the high produc-
tion cost and the failure of matching high-voltage cathodes, the
commercialization of ether electrolytes remains challenging.!°!

© 2023 Wiley-VCH GmbH
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Multilevel Gradient-Ordered Silicon Anode with

Unprecedented Sodium Storage

Ying Li, Feng Wu, Yu Li,* Xin Feng, Lumin Zheng, Mingquan Liu, Shugiang Li, Ji Qian,
Zhaohua Wang, Haixia Ren, Yuteng Gong, Chuan Wu,* and Ying Bai*

While cost-effective sodium-ion batteries (SIBs) with crystalline silicon anodes
promise high theoretical capacities, they perform poorly because silicon
stores sodium ineffectively (capacity <40 mAh g~'). To address this issue,
herein an atomic-order structural-design tactic is adopted for obtaining unique
multilevel gradient-ordered silicon (MGO-Si) by simple electrochemical
reconstruction. In situ-formed short-range-, medium-range-, and
long-range-ordered structures construct a stable MGO-Si, which contributes
to favorable Na-Si interaction and fast ion diffusion channels. These
characteristics afford a high reversible capacity (352.7 mAh g~ at 50 mA g~')
and stable cycling performance (95.2% capacity retention after 4000 cycles),
exhibiting record values among those reported for pure silicon electrodes.
Sodium storage of MGO-Si involves an adsorption—intercalation mechanism,
and a stepwise construction strategy of gradient-ordered structure further
improves the specific capacity (339.5 mAh g~' at 100 mA g~'). Reconstructed
Si/C composites show a high reversible capacity of 449.5 mAh g1,
significantly better than most carbonaceous anodes. The universality of this
design principle is demonstrated for other inert or low-capacity materials
(micro-Si, SiO,, SiC, graphite, and TiO,), boosting their capacities by 1.5-6
times that of pristine materials, thereby providing new solutions to facilitate
sodium storage capability for better-performing battery designs.

materials, while hard carbon is the most
promising anode material for industrial-
ization, its capacity is limited and presents
a bottleneck for further development.
Therefore, providing additional SIB-anode
choices urgently requires the development
of novel promising materials. Silicon,
which has been widely used as an elec-
trode in commercial lithium-ion batteries
owing to its ultrahigh capacity and cost-
effectiveness, also has a high theoretical
capacity (954 mAh g=!) for SIBs.[>!% Pre-
dictably, the use of Si-based SIBs will create
new opportunities for the development of
Na-based energy storage. Unfortunately,
silicon delivers negligible experimental
capacity (<40 mAh g~!) in SIBs. Hence, Si
was considered electrochemically “inactive”
for a long time because crystalline Si was
regarded as unsuitable for alloying with
Na atoms;!"!! this inactive nature of Si is
believed to originate from positive binding
energy of Na in bulk Si (+0.6 eV),[?] low
thermodynamic driving force (~0.1 eV),[*]
and high diffusion barrier (3.12 eV in a Si

1. Introduction

Sodium-ion batteries (SIBs), which are cost-effective and envi-
ronmentally sustainable, are emerging in the grid-scale energy
storage market.'>] The remarkable promise of Na-based en-
ergy storage has placed significant emphasis on the development
of high-performance electrode materials.[*?! In terms of anode
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nanosheet),['* which indicate that Na inser-
tion into Si is energetically infeasible under
realistic battery operating conditions. Although some
nanoengineering,[**! carbon-coating,'®! and porous-structure!!’]

strategies promote Na* diffusion and storage, limited progress
has been reported because such efforts still hardly solve intrinsi-
cally unfavorable Na-Si interactions and sluggish Na* diffusion
in the Si lattice.

In essence, Na-storage chemistry is realized via interactions
or electrochemical reactions involving Na* and the atoms of
the host material. Therefore, the atomic structure and order-
ing of the host material greatly affect Na—host-material inter-
actions, and consequently, the Na-storage performance. For in-
stance, graphite, a long-range-ordered crystalline carbon mate-
rial, was also considered inactive toward Na storage due to its
small layer spacing and its inability to form stable binary Na—C
compounds, such as NaC, and NaC,.['*-2!] By contrast, hard car-
bon, a short-range-ordered amorphous carbon material, realizes
reversible Na storage through the mechanisms of Na intercala-
tion into small short-range ordered graphitic layers, Na adsorp-
tion in defects, and Na filling in nanopores.[?224] Additionally, ex-
panded graphite, which is more ordered than hard carbon, deliv-
ers a favorable Na-storage capacity because its large layer spacing

© 2023 Wiley-VCH GmbH
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Clarifying the microstructure of hard carbon is essential to reveal its
sodium storage mechanism and to develop hard carbon negative
electrodes for high-performance sodium ion batteries. Currently,
although various sodium storage mechanisms for hard carbon
models are proposed, they are still controversial. Besides, the
puzzling and abnormal variation of a Na* diffusion coefficient
during the discharge process cannot be well explained. Inspired
by amorphous alloys, we propose and confirm the dispersion region
at the junction between amorphous structures and graphite micro-
crystals, which is closely related to the structure of graphite micro-
crystals. The special dispersion region plays a buffer role in the sodium
ion diffusion process and provides satisfactory storage capacity.
Therefore, the effect of synthesis conditions on the local structure
in the dispersion region should be considered when designing hard
carbon. In this work, a specific graphite microcrystalline structure of
hard carbon is precisely synthesized by screening organic molecules,
and the constraint relationship between the parameters of the
graphite microcrystalline structure is revealed. Importantly, this work
is of great significance for resolving the current controversy about the
sodium storage mechanism and making clear the anomalies of sodium
ion diffusion in the low-voltage interval (<0.1 V) in hard carbon.

Introduction

Sodium-ion batteries (SIBs) can provide effective support for
lithium-ion batteries (LIBs) due to their low cost, long life, and
high safety, whose rapid rise can alleviate the pressure brought
by lithium resources, matching with the energy security and
global sustainable development.'™ Owing to the affordable
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Unlocking the local structure of hard carbon to
grasp sodium-ion diffusion behavior for advanced
sodium-ion batteries¥

@ Yuteng Gong,?
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and Ying Bai

Broader context

Sodium-ion batteries (SIBs) have the characteristics of abundant
resources, low-cost, environmental friendliness and high safety, so they
are regarded as on of the most promising candidates for the next-
generation large-scale energy storage systems. Improving the capacity
and lifespan of hard carbon (HC), one of the core anode materials of SIBs,
is the key to realize the commercialization of SIBs. Unfortunately, the
microstructure of HC designed for this purpose has been poorly reported
and investigated, which limits the practical applications of SIBs. In this
manuscript, we comprehensively and systematically analyze the reasons
for the phenomenon that the diffusion coefficient of sodium ions
remains stable, then decreases sharply and recovers rapidly during the
discharge process. Additionally, the influence of the ‘dispersion region’
structure on the diffusion coefficient of sodium ions and its sodium
storage mechanism is proposed and analyzed. This article can provide
guidance for the design and future development of high-performance HC
microstructures, and is of great reference significance for analyzing and
understanding the electrochemical reaction kinetics of the whole energy
storage system.

cost and satisfactory reversible capacity, hard carbons (HCs)
as the preferred anode material for SIBs have become the focus
of research.>® HCs are composed of amorphous carbon and
graphene nanosheets with obvious turbostratic disorder and
curvature.”® Based on the typical HC models, a series of sodium
storage mechanisms, such as intercalation-adsorption,” adsorp-
tion-intercalation,'®™** adsorption—pore filling,"* and adsorption-
insertion—pore filling,">"*® have been successively proposed with
the goal of revealing the relationship between the local micro-
structure and sodium-ion storage behaviors. However, there is a
lack of unified understanding of the relationship between the
microstructure and the diffusion behavior of sodium in different
potential intervals of the HC anode, especially in the low-voltage
plateau regions.'” ™

Numerous studies have demonstrated that with the increase
of discharge depth, the diffusion trend of sodium ions exhibits
three stages.”® > As shown in Fig. 1, during the whole discharge
process, the sodium ion diffusion coefficient can be divided into

Energy Environ. Sci., 2024,17,1387-1396 | 1387
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Developing effective strategies to improve the initial Coulombic efficiency
(ICE) and cycling stability of hard carbon (HC) anodes for sodium-ion
batteries is the key to promoting the commercial application of HC. In this
paper, homotype heterojunctions are designed on HC to induce the generation
of stable solid electrolyte interfaces, which can effectively increase the ICE of
HC from 64.7% to 81.1%. The results show that using a simple surface
engineering strategy to construct a homotypic amorphous Al,O; layer on the
HC could shield the active sites, and further inhibit electrolyte decomposition
and side effects occurrence. Particularly, due to the suppression of continuous
decomposition of NaPF in ester-based electrolytes, the accumulation of NaF
could be reduced, leading to the formation of thinner and denser solid
electrolyte interface films and a decrease in the interface resistance. The HC
anode can not only improve the ICE but elevate its sodium storage
performance based on this homotype heterojunction composed of HC and
Al,Os. The optimized HC anode exhibits an outstanding reversible capacity of
321.5mAh g™ at 50 mA g~'. The cycling stability is also improved effectively,
and the capacity retention rate is 86.9% after 2000 cycles at 1 A g~ while that
of the untreated HC is only 52.6%. More importantly, the improved sodium
storage behaviors are explained by electrochemical kinetic analysis.

KEYWORDS

hard carbon anodes, homotype heterojunctions, sodium-ion batteries, solid electrolyte
interface, surface engineering
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1 | INTRODUCTION

| Ying Bai*? | Junfeng Rong' |

Abstract

Metallic lithium (Li) is considered the “Holy Grail” anode material for the next-
generation of Li batteries with high energy density owing to the extraordinary
theoretical specific capacity and the lowest negative electrochemical potential.
However, owing to inhomogeneous Li-ion flux, Li anodes undergo uncontrollable
Li deposition, leading to limited power output and practical applications. Carbon
materials and their composites with controllable structures and properties have
received extensive attention to guide the homogeneous growth of Li to achieve
high-performance Li anodes. In this review, the correlation between the behavior
of Li anode and the properties of carbon materials is proposed. Subsequently, we
review emerging strategies for rationally designing high-performance Li anodes
with carbon materials, including interface engineering (stabilizing solid electro-
lyte interphase layer and other functionalized interfacial layer) and architecture
design of host carbon (constructing three-dimension structure, preparing hollow
structure, introducing lithiophilic sites, optimizing geometric effects, and
compositing with Li). Based on the insights, some prospects on critical challenges
and possible future research directions in this field are concluded. It is anticipated
that further innovative works on the fundamental chemistry and theoretical
research of Li anodes are needed.

KEYWORDS
carbon materials, dendrites, hosts, interfacial layers, Li metal anodes

LIBs face severe limitations due to their complex
chemistry, preventing them from fulfilling the constantly

Extensive investigation on the energy storage technologies
for sustainable energy sources (solar, tidal, and wind
energy) is on the way in pursuit of carbon neutrality.
Among the possible candidates, lithium-ion batteries
(LIBs) have achieved the best compromise between energy
density, service life, efficiency, and cost.' However,

increasing energy density requirements, so the race for
new batteries beyond LIBs has already begun. Metallic
lithium (Li) exhibits the lowest reduction potential of
—3.04V versus standard hydrogen electrode and a very
high theoretical specific capacity of 3860 mAhg™', en-
abling a higher energy density than commercial LIBs
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Coating

Enhancing the interfacial stability between cathode active material and liquid/solid electrolyte is a vital step
toward the development of high energy density sodium-ion batteries (SIBs). One of the challenges plaguing this
field is an economical and feasible method to construct valid protective layers on cathode materials. Herein, an
effective strategy based on synergetic effect of multifunctional framework by simultaneous surface NaTiz(PO4)3
(NTP) coating and bulk Ti*t doping is designed to improve the performance of P2-Nag gLig 12Nip 22Mng 6602
(NLNM@NTP). The combined analysis of in-situ X-ray diffraction (in-situ XRD), scanning transmission electron
microscopy (STEM) and density functional theory (DFT) calculations demonstrates that the multifunctional
framework optimizes the lattice structure, improves the Ni oxidation states and enhances the stability of crystal
and interfacial structure. NLNM@NTP cathode displays high average discharge potential and fast diffusion of Na-
ions and electrons. As a result, the NLNM@NTP cathode reveals highly Na storage performance in both liquid-
state and solid-state SIBs. The excellent capacity retentions after 500 cycles at 5 C in liquid-state batteries and

after 100 cycles at 1 C in solid-state batteries are both close to 100%.

1. Introduction

Rechargeable lithium-ion batteries (LIBs) have been considered as
the dominating energy storage technology and gained great success of
consumer devices[1-4]. However, there still remains an increasing
requirement for more sustainable and cost-effective energy storage
system for smart electric grid and large-scale storage. As complementary
candidates to LIBs, sodium-ion batteries (SIBs) have been supposed as a
prospective candidate for the next-generation battery system due to the
abundance of Na element on the earth, wide distribution, and low cost
[5-8]. The battery performance and the expenditure are principally
dominated by the selected cathode materials. Among various sodium
storage cathode materials, including layered oxides[9-11], polyanion
compounds[12-14], and prussian blue analogues[15], layered transi-
tion metal oxides (NayTMO,, TM: transition metal) have been widely
investigated as attractive cathode materials owing to their suitable
operating voltages, 2D Na' diffusion paths, abundant resources and
simple synthesis[16,17]. Na-based layered transition metal oxide cath-
ode materials can be classified into four groups of P2, 02, P3, and

O3-types in terms of oxygen alignment around the Na-ions and the
stacking of the transition metal oxide layers. The letters “P” and “O”
represent the prismatic (P) and octahedral (O) coordination environ-
ment of Na™, respectively. The numbers 2 and 3 indicate the number of
TM layers in the repeated uniting of stacking[18].

P2-type Mn-based layered oxides have attracted much attention as
cathode materials for SIBs, owning to their open prismatic channel and
direct Na™ diffusion paths[18-20]. Nevertheless, it should be noted that
P2-phase Mn-based materials usually exhibit significant volumetric
variations and lattice distortions upon Na™ extraction/insertion, leading
to deteriorative crystal structure and rapid capacity decay[21].
Furthermore, the attenuation of electrochemical performances is also
caused by unstable interfaces[22]. The detrimental side reactions be-
tween cathode materials and electrolyte tend to destroy the integrity of
cathode/electrolyte interface (CEI), causing the exfoliation of active
material, impeding the diffusion of Na-ions and electrons. In response to
these problems, many approaches have been provided to enhance the
structural and interfacial stability of the electrode. For example, element
substituting is an effect strategy to inhibit phase transformation and
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Aluminum (Al) is the most abundant metal element in Earth’s crust. Al-based rechargeable batteries have
aroused booming attention by virtue of high theoretical capacity and low cost, while detrimental shortages such
as lower voltage and inferior lifespan limit their practical application. Regarded as a promising opportunity to
tackle this issue, Al-based rechargeable batteries are redesigned for dual-ion configuration with the aid of anion-
inserting cathode, which is called Al-based dual-ion batteries (ADIBs). In this review, in-depth insights into ADIBs

are comprehensively established, including basic merits, fundamental mechanisms and underlying challenges.
Moreover, diverse strategies for advanced cathode, electrolyte and Al metal anode in ADIBs are also outlined.
Afterwards, the pivotal perspective towards future development of ADIBs are discussed in detail.

1. Introduction

To achieve sustainable development of modern society, it is essential
to overcome the environmental and energy problems caused by the
uncontrolled combustion of fossil fuels. Renewable energies such as
solar, wind and tide can provide solutions to these issues, turning into
the main driving force for the development of energy storage technol-
ogy. In recent years, as a new large-scale energy storage technology,
lithium-ion batteries (LIBs) have rapidly occupied the market of portable
consumer electronics, electric vehicles and stationary energy storage
devices because of their advantages of high energy density and long
cycle life. However, with the increasing demand for large-scale energy
storage, the supply of lithium will face a potentially huge challenge due
to the limited reserves of lithium in the Earth’s crust. In addition, the
application of cobalt in cathode materials is also troubled by the prob-
lem of metal resources [1]. Therefore, it is necessary to develop alter-
native battery technologies employing more abundant elements [2,3].
To this end, researchers have developed multiple next-generation sec-
ondary batteries, such as monovalent sodium/potassium ion batteries,
divalent magnesium/calcium/zinc ion batteries, and trivalent
aluminum ion batteries (AIBs) [4-13].

Aluminum (Al) was discovered by a German chemist, Andreas
Marggraf, in 1750s for the first time, possessing the electron configu-

ration of 1s22s%2p®3s23p!, and it crystallize in the space group Fm3m.
Within crystalline structure, the free movement of three valence elec-
trons seems unaffected by the existence of metal ions, producing a high
electrical conductivity of 3.8 x 10”7 S m™}, a value that reaches about
65% of copper. It endows aluminum with great application potential in
the field of batteries [14]. Pure Al can be prepared from minerals or
scrap recycling process. For example, 1 kg of Al can be produced from 4
kg of bauxite mineral. Compared with lithium, the concentration of Al in
raw materials is more than two orders of magnitude higher than that of
lithium. Additionally, the building-up of Al recycling infrastructure
dramatically decrease the energy consumption, which contributes to
35% of the Al supply. Benefiting from abundant reserves in Earth’s crust,
mature industry and recycling infrastructure, the Al metal is priced at
just 1.9 USD kg™, about one tenth of lithium metal. Furthermore, the
Resource Risk Index (RRI) was put forward by the Cologne Institute for
Economic Research, aiming for the assessment of natural resource sup-
ply risks. There are 45 elements divided into three classes of criticality
with: critical, less critical and not critical. As one of the raw materials for
LIBs cathode, Co is considered critical, while Al are slightly less critical
than Li [15]. In addition, unlike Li and Na, Al appears to be highly stable
upon exposure to air and water, which avoids manufacture inconve-
nience. Therefore, Al possesses great potential to be used in rechargeable
batteries, with the aid of its low cost and good availability, paving the
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Sodium-ion batteries (SIBs) have recently reemerged as a promising technology in the fields of large-
scale energy storage systems and low-speed electric vehicles, owing to the abundance and even
distribution of sodium resources. Moreover, the similarity in working principles between SIBs and
lithium-ion batteries (LIBs) further accelerates their development. However, the development of SIBs
still faces challenges, such as the limited availability of electrode materials that demonstrate both
satisfactory cycling stability and high-rate performance. Typically, common electrodes utilize specific
binders to integrate the active materials with conductive additives. Unfortunately, frequently used
binders are often dielectric and mechanically unstable, leading to a decrease in specific capacity and
poor cycling stability. In addition, strongly electronegative groups within binders can irreversibly
capture Na" ions, resulting in an increase in irreversible capacity. Therefore, the use of binder-free, free-
standing electrodes is crucial for the development of high-performance SIBs due to their enhanced
electronic conductivity and reversible electrochemical reactions. This review provides a comprehensive
overview of the recent advancements in free-standing electrodes for SIBs and flexible SIBs. It examines
the challenges specific to free-standing electrodes and flexible SIBs and proposes effective strategies to
overcome these obstacles. By addressing these challenges, this review aims to stimulate significant
progress in the development of flexible energy storage devices, fostering their extensive utilization
across diverse applications.

Keywords: Free-standing electrodes; Limitations; Optimizations; Practical applications; Sodium-ion batteries

Introduction

Since the successful commercialization of lithium-ion batteries
by Sony in 1991, these batteries have found extensive applica-
tions across various domains of our daily lives [1]. However,
the increasing demand for lithium resources has led to a signifi-
cant rise in the cost of LIBs. To address the growing need for

* Corresponding authors.
E-mail addresses: Li, Y. (liyu0820@bit.edu.cn), Bai, Y. (membrane@bit.edu.cn).
' These authors contributed equally to this work.

energy storage and power systems, researchers have been explor-
ing various rechargeable battery systems [2-5]. SIBs have gained
substantial attention among these alternatives due to their simi-
lar physical properties to lithium and the abundance of sodium
resources [6-13]. However, the larger ionic radius of sodium ions
(Na*) compared to lithium ions (Li*) generally results in slower
dynamics and shorter cycle lifespans [14,15]. To overcome these
challenges, extensive research efforts have been dedicated to
exploring strategies such as chemical composition modifications
[16,17], surface modifications [18,19], structural adjustments
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Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-
density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead
to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on
the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Nay/3Ni;,
3Mny/302 cathode can be significantly improved when impurity-vibrational entropy is increased by simulta-
neously constructing surface ZrO, coating and Zr** doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction
(XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/
discharging process, achieving an ultra-low volume change (1.18%) upon Na™ entire extraction at a high cut-off
voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy
formation energy of P2-NaNM@Zr (—2.11 eV) is higher than that of sample P2-NaNM (—2.61 eV), strongly
indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na
storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage

range of 2.5 — 4.0 V, delivering reversible capacity of 132 mA h g™! after 50 cycles within 2.0 — 4.5 V.

1. Introduction

Considered the low cost and high abundance of sodium, sodium ion
batteries (SIBs) have drawn considerable attention as a promising
technology for large-scale energy storage [1-5]. An estimation of the
relative costs of SIBs shows that the cathode materials are the highest
proportion (32.4%) [6-8]. Therefore, development of cathode materials
with high density energy and stable electrochemical performance is a
crucial factor to accelerate commercial application of SIBs. Among
various sodium storage cathodes, layered oxides have aroused much
interest over recent years owing to their variety of compositions, high
specific capacity, environmental benignity, high ionic conductivity and
feasible synthesis [9]. Generally, the sodium-based layered oxide ma-
terials based on the occupation sites of sodium ions and oxygen stacking
ordering could be classified into four main groups: P2-type, P3-type,
02-type and O3-type. The letters “P” and “O” suggest prismatic and

* Corresponding authors.

octahedral coordination environment of Na ions respectively, and the
numbers “2” and “3” represent the number of transition metal layers in
each repeated unit [10]. It is widely accepted that P2-structure sodium
intercalated oxides show superior electrochemical behaviours than the
0O3-featured ones due to their wide prismatic paths within TMO; slabs
and direct Na-ion diffusion.

P2-type Nag/3Nij ,3Mny, 302 material as a layered sodium manganese
oxide has been extensively studied for SIBs due to the high discharge
capacity of 173 mAh g~! based on cationic and anionic redox, high
operating voltage (i.e., ~3.8 V), reversibly extract all of sodium ions and
ambient atmosphere [11]. However, severe capacity fade and undesir-
able rate performance especially at the voltage of 2.0 — 4.5 V limit its
high energy density. One of the main reasons is that P2-type Na,.
Ni; ,3Mny/302 usually undergoes undesired P2-O2 phase transformation
and large volume change during the charging process, which leads to
exfoliated materials and impedes the electrons/ions transfer [12].
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Metal Selenides Anode Materials for Sodium lon Batteries:
Synthesis, Modification, and Application

Yuteng Gong, Yu Li,* Ying Li, Mingquan Liu, Ying Bai,* and Chuan Wu*

The powerful and rapid development of lithium-ion batteries (LIBs) in sec-
ondary batteries field makes lithium resources in short supply, leading to
rising battery costs. Under the circumstances, sodium-ion batteries (SIBs)
with low cost, inexhaustible sodium reserves, and analogous work principle
to LIBs, have evolved as one of the most anticipated candidates for large-
scale energy storage devices. Thereinto, the applicable electrode is a core ele-
ment for the smooth development of SIBs. Among various anode materials,
metal selenides (MSe,) with relatively high theoretical capacity and unique
structures have aroused extensive interest. Regrettably, MSe, suffers from
large volume expansion and unwished side reactions, which result in poor
electrochemistry performance. Thus, strategies such as carbon modification,
structural design, voltage control as well as electrolyte and binder optimi-
zation are adopted to alleviate these issues. In this review, the synthesis
methods and main reaction mechanisms of MSe, are systematically sum-
marized. Meanwhile, the major challenges of MSe, and the corresponding
available strategies are proposed. Furthermore, the recent research progress
on layered and nonlayered MSe, for application in SIBs is presented and dis-
cussed in detail. Finally, the future development focuses of MSe, in the field

demands for large-scale energy storage
systems.l To mitigate the situation, devel-
oping an alternative rechargeable bat-
tery system has attracted broad attention.
Among many candidates, sodium-ion
batteries (SIBs) stand out with abundant
sources, appropriate redox potential, and
low cost, and have been considered as
the better substitutions for LIBs and the
key technology with great potential for
large-scale energy storage.*”l As shown
in Figure 1a, SIBs work in an analogous
principle to LIBs, which are also “rocking
chair” batteries.®] Therefore, the signifi-
cant progress have made in LIBs could
strongly support the development of
SIBs. Besides, cheaper, lighter, and more
abundant aluminum (Al) foil can be used
as the current collector for SIBs, while
copper (Cu) is the only choice for LIBs,
meaning that SIBs have lower cost and
greater commercial potential. Although

of rechargeable ion batteries are highlighted.

1. Introduction

The vigorous development of smart grid, new-energy automo-
bile industry, and consumer electronics devices has put forward
higher requirements for rechargeable batteries.l!l Lithium-ion
batteries (LIBs) have attracted extensive research interest world-
wide since they have been first commercialized in 1991.21 By
virtue of their high energy density, robust security, and long
cycle lifespan, LIBs vigorously expand into newly emerging
application fields.®l However, the less and uneven distribution
of lithium resources makes it challenging to sustainably satisfy
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there are many attractive advantages, SIBs
also face many formidable challenges. The
ionic radius (1.02 A for Na*, 0.76 A for Li")
and molar mass (22.99 g mol™ for Na,
6.94 g mol™ for Li) of Na are larger than those of Li, which is
not conducive to Na* diffusion kinetics and structural stability
of electrode materials during sodiation/desodiation processes
(Figure 1b).) Unfortunately, it means that most of the con-
ventional electrode materials for LIBs cannot be committed to
SIBs. Thus, the critical technology for the development of SIBs
lies in the exploitation of electrode materials with satisfactory
electrochemical performances.><1%11
The investigations of SIBs cathode materials have achieved
encouraging progresses, including layered materials,>12 poly-
anionic compounds,® and Prussian blue analogs."! How-
ever, the development of anode materials with low electro-
chemical reaction platform, relatively high reversible capacity,
and stable structure is still insufficient. Until now, common
anode materials for SIBs include carbonaceous materials,
titanium materials,'°®?% alloy materials,?!! metal oxides/
sulfides/selenides,*?? and organic materials,?’] etc. In terms
of reaction mechanisms, these materials can be assigned to
three main types: intercalation-, conversion- and alloying-type
anodes.?3 Specifically, carbonaceous materials and Ti-based
materials are the most widely studied intercalation-type anode
materials for SIBs.? Graphite with stable electrochemical
performance has developed into the most common commer-
cial anode material for LIBs. However, theoretical calculations

© 2022 Wiley-VCH GmbH
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Construct NiSe/NiO Heterostructures
on NiSe Anode to Induce Fast Kinetics

for Sodium-lon Batteries
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Itis of great significance to design and innovate electrode materials with unique structures to effectively
optimize the electrochemical properties of the secondary battery. Herein, inspired by neuron networks, an
ingenious synthesis is proposed to fabricate NiSe with multidimensional micro-nano structures, followed
by insitu construction of NiSe/NiO heterostructures via a temporary calcination. The major structure of
bulk NiSe synthesized by the solvothermal method is 3-dimensional micron cluster spherical particles
interwoven by uniform one-dimensional nanofibers. Such structures possess the synergistic advantages
of nano and micro materials. After a temporary calcination in air, NiSe/NiO heterostructures should be
formed in the bulk NiSe, which provides a built-in electric field to enhance diffusion kinetics of sodium
ions. This special neural-like network and heterojunction structures ensure the excellent structural stability
combined with rapid kinetics of the electrode, releasing 310.9 mAh g™ reversible capacity after 2,000
cyclesat 10 Ag™ . Furthermore, the electrochemical storage and ion transport mechanisms are elaborated
by electrochemical analysis and theoretical calculation in more detail.
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Introduction

With the rapid development of electric vehicles and large-scale
electricity grids, high-performance and low-cost energy storage
devices have become particularly substantial [1]. Lithium-ion
batteries (LIBs) are currently the most widely commercialized
battery systems [2]. However, limited by scarce lithium resources,
high raw material costs, and frequent safety issues, the large-
scale energy storage industry is supposed to develop a lower-cost
technology to replace LIBs [3]. Sodium-ion batteries (SIBs) are
considered to be an ideal choice in the field of large-scale energy
storage due to their abundant resources and cheaper price [4,5].
Nevertheless, compared with Li*, the larger size of Na* impairs
reversibility and cycling performance, leading to tardy reaction
kinetics of SIBs [6,7]. Therefore, it is undoubtedly of great sig-
nificance to seek high-performance sodium storage electrode
materials, and further modify them to improve the sodium ion
diffusion in the materials.

Recently, transition metal chalcogenides (TMCs) have been
successfully used as anode materials for SIBs [8]. Among them,
metal sulfides (MS,) exhibit excellent electrochemical perfor-
mances [9], while relatively few studies have been focused on
metal selenide (MSe,). It is found that MSe, perform better than
MS, in several fields due to their narrower band gaps and better
electronic conductivity [10]. However, owing to the basically
similar reaction mechanism with MS, in the battery, Se of the
MSe, electrode inevitably dissolves in the electrolyte during the

Li et al. 2023 | https://doi.org/10.34133/energymatadv.0044

reaction, resulting in the destruction of the material structure
and the loss of active substances [6]. In addition, the sodium
storage mechanism of the MSe, is the conversion reaction,
which causes a serious volume expansion of the electrode in the
electrochemical cycle process, leading to the electrode breakage
and substantial capacity decline [11]. To address these deficien-
cies, particle size changing [6], shape/interlayer spacing regu-
lation [12], and fabrication of carbon material composites [13]
have become commonly adopted approaches and the desirable
effects of these measures have been realized. Wang et al. [14]
prepared 3-dimensional porous carbon-coated FeSe, particles
by the template-free calcination method, which delivered excel-
lent cycling stability and a superior rate capability of 455 mAh
g " after 100 cycles at a current density of 0.1 A g~* due to the
significantly shortened electron/ion transmission path by the
3-dimensional carbon skeleton. Chen et al. [15] embedded MoSe,
nanosheets on the surface of Fe,Se,@C with a core-shell struc-
ture to prepare the Fe,Se,@C@MoSe, composite. MoSe, as a
buffer layer can effectively alleviate the volume expansion of
selenide during the cycle, so as to obtain a stable cycle perfor-
mance. At the current density of 1 A g™, the capacity retention
rate after 600 cycles is 87.1%.

It can be seen that the researches on MSe, mainly focus on
coating modification through conductive carbon. In fact, design-
ing the particles with multidimensional micro-nano structures
also exhibit the markedly improved stability of the electrode [16].
Firstly, nanoscale electrodes effectively shorten the diffusion path
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Metal Chalcogenides with Heterostructures for
High-Performance Rechargeable Batteries

Yu Li, Feng Wu, Ji Qian, Minghao Zhang, Yanxian Yuan, Ying Bai,* and Chuan Wu*

Heterostructures exhibit intriguing and significant properties for functional
material applications, such as photosensing devices, semiconductor materials,
and supercapacitors. Rechargeable batteries as typical energy-storage devices
have drawn widespread attention in the past several decades, on account of high
energy density, being low-cost, and ecofriendly. Preparing superior active
materials is the critical technology to ameliorate the electrochemical performance
of batteries. In recent years, the concept of constructing heterostructures for the
application of electrode materials has been considered as a promising design
approach. Among all the electrode materials, metal chalcogenides (MCs) have
presented excellent properties due to their high theoretical capacity based on
multielectron reaction. Herein, the progress on MCs with heterostructures is
summarized in terms of various material species and their specific application for
several typical battery systems. Finally, possible challenges and comprehensive
perspectives are given to provide an instructive direction for the thoughtful

series of issues caused by the ever-growing
demands for higher electrochemical per-
formance and longer cycle life. As dis-
cussed, batteries’ performances mainly
depend on the active materials including
cathodes and anodes.””! Researchers have
made tremendous efforts to fabricate excel-
lent active materials through various syn-
thesis methods and ingenious processing
technologies, like coating conductive mate-
rials,’’) doping heteroatoms,! designing
specific morphologies (nanostructures,?’
hollow ~ structures,® core—shell struc-
tures,””)  hierarchical structures,”® etc.),
etc. Therefore, constructing heterostruc-
tures composed of two or more different
components has been recently emerged

design strategies of heterostructures and the development of MCs for next-

generations rechargeable batteries.

1. Introduction

The high-speed development of economy and the enhanced
awareness of environmental protection are providing huge
opportunities and challenges for the electrochemical energy stor-
age (EES) field. Especially, rechargeable batteries as typical
energy-storage devices have attracted much attentions in the past
few decades, due to their superiorities like high energy density,
being low-cost, and ecofriendly."! Nevertheless, they must face a
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and wildly studied, due to the fact that they
may amalgamate the advantages of single
components and even endow new func-
tions to further improve their properties.’

To further elevate the energy density of
rechargeable battery systems, considerable
attention has been paid to exploring active materials based on the
chemistry of multielectron reactions, which are expected to pro-
vide a higher theoretical capacity. Among these multielectron
reaction materials, metal chalcogenides (MCs) have become
research hotspots and show great prospects for application
due to their layer-dependent bandgap, which can offer excellent
electronic and mechanical performance.'” MCs can be defined
as a generalized abbreviation of MCs, where M is a metal atom
(Fe, Co, W, Mo, Sn, and so on) and C is a chalcogen atom (S, Se,
and Te). They usually have an open structure with a weak inter-
layer Van der Waals force and may contribute to fast intercala-
tion/deintercalation for ions (Li*, Na™).'"! In addition, the
electrochemical reaction mechanisms of MCs are mainly based
on the conversion reaction or alloying reaction, which can
achieve higher reversible capacity and make them more out-
standing compared with other electrode active materials.
However, the electrochemical performances of MC electrodes
for batteries are still severely restricted by many problems, like
their intrinsic electronic conductivity, extensive aggregation, and
unstable bulk structure (terrible volume expansion) during the
charge/discharge process.

In recent years, constructing MCs with heterostructures,
namely, hybridization of MCs with other analogous functional
materials, is becoming an interesting strategy to synthesize a
new-type composite, which can solve the aforementioned limita-
tions. Several published review articles mainly focused on the
synthesis and application for various MCs. Until now, research

© 2021 The Authors. Small Science published by Wiley-VCH GmbH
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Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 mAh cm , and gravimetric capacity of 2,980 mAh gfl, and
thus is highly attractive for electrochemical energy storage. However, it suffers from several issues, such as the dendrite
formation, during Al stripping—deposition cycling, which has been verified to account for the short circuit and limited cyclic
performance. Herein, we use a facile and applicable method to in-sifu reconstruct the Al anode surface with F-Al-O chemical
bonds, which could preferentially induce the planar growth of Al along the interface plane, thus leading to the dendrite-free
morphology evolution during the cycling. Benefiting from F-Al-O chemical bonds on the surface of Al anodes, long lifespan of
symmetric cells can be realized even under 1 mA cm > and 1 mAhcm °. Coupling the F-Al anode with graphite-based cathodes,
high-voltage dual-ion Al metal batteries can be achieved with long-term cycle stability up to 1,200 cycles (at 0.5 mA cmfz),
surpassing the counterparts using pristine Al metal anode. Furthermore, the effectiveness of this surficial modification strategy is
also elucidated with the aid of theoretical calculation. This work provides novel insights on low-cost and facile strategies against

the Al dendrite growth in aluminum batteries.

rechargeable aluminum batteries, Al metal anode, Al dendrite, dual-ion batteries, surficial modification
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1 Introduction

Increasing research attention has been focused on next-
generation rechargeable batteries to overcome the limitation
of metal resources (e.g., lithium, cobalt and nickel) used in
lithium-ion batteries (LIBs) [1-3]. Multivalent metal bat-
teries have been considered as potential alternatives, which is
ascribed to their good metal availability, high theoretical
capacity, low flammability and cost [4—7]. Serving as one of
the most promising candidates among multivalent metal
batteries, rechargeable aluminum batteries (RABs) are en-

*Corresponding authors (liyu0820@bit.edu.cn; membrane@bit.edu.cn;
chuanwu@bit.edu.cn)

© Science China Press 2024

dowed with various advantages including abundant Al
source and high theoretical capacities [8—11]. With regard to
Al metal anodes, ultrahigh theoretical volumetric capacity up
t0 8,048 mAh cm ° and a competitive theoretical gravimetric
capacity of 2,981 mAh gf1 can be achieved [12—14]. Owing
to the passivation effect of oxide layers on the Al metal
surface, the stable Al stripping/plating is impeded in typical
aqueous electrolytes [15—17]. Fortunately, ionic liquid elec-
trolytes (e.g., AICl;—1-ethyl-3-methylimidazolium chloride
(EMIQ)) ensure the reversible electrochemical deposition of
Al metal at anodes, which further promotes the investigation
on RABs [18-21]. Many efforts have been devoted to pur-
suing high-performance cathode materials for the improve-
ment of energy density and cyclic lifespan in RABs [22-26].
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ABSTRACT: MOF-based materials are a class of efficient precursors for the 3.0 pesodumZ s NSPC
preparation of heteroatom-doped porous carbon materials that have been widely 25] e

applied as anode materials for Na-ion batteries. Thereinto, sulfur is often 2Z -

introduced to increase defects and act as an active species to directly react with 2 2.0

sodium ions. Although the sulfur introduction and high surface area can g

synergistically improve capacity and rate capability, the initial Coulombic = 151

efficiency (ICE) and electrical conductivity of carbon material are inevitably :—; 100802

reduced. Therefore, balancing sodium storage capacity and ICE is still the &€ — |--7

bottleneck faced by adsorbent carbon materials. Here, sulfur-encapsulated % 0.51 ARz = - Losomion o™
microporous carbon material with nitrogen, sulfur dual-doping (NSPC) is o 0.0 so"’”""ErA;éS;-~.'II:;:__l '
synthesized by postprocessing, achieving the reduced specific surface area by ) 200 400 600 800

encapsulating sulfur in micropores, and the increased active sites by edge sulfur

Specific capacity (mAh g™)

doping. The synergy between encapsulation and sulfur doping effectively balances
specific capacity, rate capability, and ICE. The NSPC material exhibits capacities
of 591.5 and 244.2 mAh g_1 at0.5and at 10 A g_l, respectively, and the ICE is as high as 72.3%. Moreover, the effect of nitrogen and
sulfur on the improvement of electron/ion diffusion kinetics is resonantly demonstrated by density functional theory calculations.
This synergistic preparation method may reveal a feasible thought for fabricating excellent-performance adsorption-type carbon

materials for Na-ion batteries.

KEYWORDS: sodium ion batteries, microporous carbon anodes, sulfur encapsulation, sulfur doping, synergistically enhance,

pseudocapacitive

Bl INTRODUCTION

Over the past few years, sodium-ion batteries (SIBs) have
received increasing attention in large-scale energy storage fields
due to their advantages of abundant resources, high energy
density, lower price, and environmental friendliness.'”>
Sodium ions have a larger ionic radius than lithium ions, and
the graphite used for lithium batteries is difficult to apply in
sodium batteries. Therefore, it is necessary to fabricate suitable
electrodes with large interlayer spacing to intercalate and
accommodate Na*. Benefitting from low cost, an appropriate
working voltage platform, and high Coulombic efficiency, hard
carbon materials have become the most popular anode
materials.””'" Unfortunately, hard carbon materials tend to
have poor rate performance due to their inability to adequately
accommodate Na" with a large radius, making them fail to
match the needs of fast charging/discharging in large-scale
energy storage.ll_14

Current research has already proved that carbon materials
with pseudocapacitive properties can store Na' through the
reversible adsorption process of Faraday capacitance.”””"
Rapid sodium storage of materials can be realized by
pseudocapacitive characteristics, leading to materials with
excellent rate performance that would meet the market of

© 2022 American Chemical Society

7 ACS Publications

fast charging and discharging.'*">" Notably, doping heter-

oatoms into carbon materials can not only effectively enhance
the pseudocapacitance of the materials but also adjust the
surface wettability and electronic conductivity, thereby
promoting charge transfer and improving the interaction
between electrodes and electrolytes. Up to now, various
heteroatom-doped carbon-based anode materials have been
extensively studied and applied in SIBs.””~>* The commonly
used heteroatoms in carbon materials are nitrogen,25
sulfur,”"*° oxygen,”” phosphorus,”*™*° and other elements.*!
Since the covalent radius is similar to that of carbon, nitrogen
can be doped to create more defects in carbon materials and
increase electronic conductivity. Oxygen doping can effectively
enhance the reversible adsorption and desorption of Na* to
increase the pseudocapacitance of carbon material.'>'®** As
for sulfur doping, it not only participates in the electrochemical
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ABSTRACT: Hard carbons (HCs), while a leading candidate for sodium-ion
battery (SIB) anode materials, face challenges in their unfavorable sodiation
kinetics since the intricate microstructure of HCs complicates the Na* diffusion
channel. Herein, a Hovenia dulcis-derived HC realizes a markedly enhanced high-
rate performance in virtue of dual-functionalized Ca. The interlayer doped Ca**
effectively enlarges the interlayer spacing, while the in situ-formed CaSe templates
induce the formation of hierarchical pore structures and intrinsic defects,
significantly providing fast Na* diffusion channels and abundant active sites and
thus enhancing the sodium storage kinetics. Achieved by the synergistic effect of
regulation of intrinsic microcrystalline and pore structures, the optimized HC
shows remarkable performance enhancements, including a high reversible capacity
of 350.3 mA h g™" after 50 cycles at SO mA g~', a high-capacity retention rate of
95.3% after 1000 cycles, and excellent rate performance (108.4 mA h g™'at2 A

p

Hard carbon

§ 45

Dual-Functionalized Ca

@ Ca?*expanding dy;, @ In-situ CaSe templates

4} # NaOH
L= o
MCaSe ‘% 15 HoO

JCa?

O™ Na*

g™ "). This work sheds light on valuable insight into the structural adjustment of high-rate HCs, facilitating the widespread utilization

of SIBs.

KEYWORDS: sodium-ion batteries, hard carbon anodes, interlayer spacing regulation, pore engineering, sodiation kinetics

B INTRODUCTION

Secondary batteries have earned great consideration to meet
the escalating demand for energy storage technologies. Among
these secondary batteries, lithium-ion batteries (LIBs) have
gained prominence due to their remarkable energy density and
cycle life. However, the constrained supply of lithium resources
leads to its high cost, which hinders the widespread use of LIBs
in large-scale energy storage systems (LSESS).' ™ Conversely,
sodium-ion batteries (SIBs) serve as a promising alternative
battery system to be applied in LSESS because of their
abundant raw material reserves as well as low price.”’
Unfortunately, suffering from the larger ionic radius of Na*
and weak interaction between Na® and graphitic layers,
traditional commercial graphite anodes fail to store Na®
reversibly in ester-based electrolytes.”™® To enhance the
reliability and broaden the applications, it is imperative to
focus on the development of anode materials that combine
cost-efficiency and high capacity for SIBs. Currently, carbon
materials,”'® metal oxides/sulfides,"'™** and alloying materi-
als'* are developed as viable anode materials for SIBs. Among
them, hard carbons (HCs) have gained significant attention as
promising candidates for anode materials in SIBs due to
abundant resources.”> More importantly, HCs are composed
of typical nongraphitizable structures with randomly packed
carbon layers, which possess large interlayer spacing to store
Na®, contributing to the high reversible sodium storage
capacity in HCs. However, the complicated microstructure of

© 2024 American Chemical Society

7 ACS Publications
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HCs inevitably leads to the hindered Na* diffusion channel,
resulting in unsatisfying sodiation kinetics and an inferior rate
performance.

To date, regulating the graphitic microcrystalline structure
and pore structure is an effective approach to ameliorating the
sodium storage kinetics of HCs. Tuning microcrystalline
parameters, such as the length (L,), thickness (L.), and
(002) interlayer spacing (dgy,) of graphitic layers, can
effectively facilitate Na* transfer and increase the Na* storage
capacity, particularly in the low-voltage region.'°™"® Optimiz-
ing carbonization temperature, introducing heteroatoms (e.g.,
N, S, and P)"”7** and metal ions (e.g, Ca?*, K*, and
Mn?*)*** have been investigated to regulate the lattice
spacing and graphitization level in HCs. Specifically, it is
crucial to obtain a suitable dy, since large interlayer spacing
causes low intercalation capacity, while a small one hinders
Na" insertion. Our group used K'-enriched biomass precursor
to modulate the interlayer spacing of HCs to 0.40 nm,
benefiting an impressive capacity of 314 mA h g™'.** More
recently, HCs with atomic Zn-doping in which zinc acetate
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Abstract: Hard carbon (HC) has attracted extensive attention due to its rich material source, en-
vironmental non-toxicity, superior sodium storage capacity, and lower sodium storage potential,
and is considered most likely to be a commercial anode material for sodium-ion batteries (SIBs).
Nevertheless, the limited initial Coulombic efficiency (ICE) of HC is the main bottleneck hindering its
practical application. To alleviate this issue, herein, a ZrO, coating was skillfully constructed by using
a facile liquid phase coating method. The ZrO, coating can act as a physical barrier to prevent direct
contact between the HC surface and the electrolyte, thus effectively reducing irreversible sodium
adsorption and inhibiting the continuous decomposition of the electrolyte. Meanwhile, this fresh
interface can contribute to the generation of a thinner solid electrolyte interface (SEI) with high ionic
conductivity. As a result, the ICE of the ZrO,-coated HC electrode can be optimized up to 79.2%
(64.4% for pristine HC). Furthermore, the ZrO,-coated HC electrode delivers outstanding cyclic
stability so that the capacity retention rate can reach 82.6% after 2000 cycles at 1 A g~ (55.8% for
pristine HC). This work provides a flexible and versatile surface modification method to improve
the electrochemical property of HC, and hopefully accelerate the practical application of HC anodes
for SIBs.

Keywords: sodium-ion battery; hard carbon anode; ZrO, coating; solid electrolyte interface

1. Introduction

Developing green and low-carbon renewable resources is an important strategy to
achieve sustainable development. Increasing attention has been paid to the exploitation
and utilization of clean renewable energy, such as solar energy, water energy, and wind
energy. However, the output of these renewable resources is intermittent and particularly
vulnerable to the effects of time, space, and seasonal climate changes, which can severely
limit the stable operation of the electrical grids. To date, constructing various large-scale
energy storage systems is an effective tactic to ameliorate this issue. Electrochemical energy
storage, which mainly includes secondary battery technology, has attracted extensive atten-
tion due to its superiorities of flexibility and convenience, easy maintenance, high energy
density, and reliable conversion efficiency [1]. Therefore, lithium-ion batteries (LIBs) have
been widely applied to various portable electronic devices since their commercialization [2].
Especially in recent years, with the rapid development of the electric vehicle industry, the
demand for LIBs has increased sharply. Nevertheless, the limited abundance in the earth’s
crust and uneven geographical distribution of lithium resources result in the increasing cost
of LIBs year by year, hindering their further application in the field of energy storage [3].
In contrast, sodium-ion batteries (SIBs) have inexhaustible sodium resources and low cost,
and their electrochemical reaction mechanisms are similar to those of LIBs [4,5]. Based on
this, developing SIBs as an imperative alternative to LIBs has a positive significance for
large-scale energy storage systems [6-10].

The high-performance anode materials are essential for the large-scale commercializa-
tion of SIBs. Although the graphite anode has been successfully commercialized in LIBs, its
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Abstract

Aluminum metal batteries are considered to be promising secondary batteries
due to their high theoretical specific capacity. However, metallic aluminum
suffers from corrosion, pulverization, and crushing problems in nonaqueous
electrolytes. Constructing a solid-electrolyte interphase layer on the anode
electrode has been confirmed to be the key to improving the cycling
performance of rechargeable batteries. Herein, we demonstrate an Al metal
anode with a physical protective layer achieved by a simple blade coating
method. This modified Al metal anode demonstrates ultra-low voltage
hysteresis (~25mV at 0.1 mA cm ™2 and ~30 mV at 1 mA cm™?2), and superior
stability (630 h at 0.1 mA cm™2 and 580 h at 1 mA cm™2). When coupling this
anode with flake graphite cathode, the assembled full cells exhibit superior
cycling stability (92mAh g™' maintained after 740 cycles at 0.1 Ag™"). The
current work presents a promising approach to stabilize Al metal anodes for
next-generation rechargeable aluminum batteries.

KEYWORDS

Al metal anode, corrosion mechanism, graphite surface modification, rechargeable
aluminum battery, stable long-cycle performance

(2980 mAh g") and high volumetric capacity (8040 mAh
cm ™) [ During the past few years, the research mainly

The rapid development of renewable energy technology
and electric vehicles has put forward higher require-
ments for energy storage systems. In particular, recharge-
able batteries provide an efficient way to fulfill the
growing need for energy conversion and storage.[l’sl
Hence, secondary batteries should be characterized by
high energy density, safety, long cycle life, low cost, and
environmental friendliness. Among them, Al-based
energy storage systems could satisfy the abovementioned
criteria due to their low cost, high gravimetric capacity

focuses on cathode materials of rechargeable aluminum
batteries (RABs) such as transition metal oxides,”®
transition metal sulfide,”'®! carbon-based materi-
als,"*'2l and polymer materials.!"*'*! Compared with
the heavily studied cathode materials, the high-stability
anode electrode has not been studied deeply enough.
Currently, most researchers choose Al foil as the
anode electrode for RABs due to its advantages of light
weight, low cost, and good plasticity. However, in the
system of ionic liquid electrolytes, Al foil will react with

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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By introducing 2 wt% triphenylphosphine oxide (TPPO) as a film-
forming agent into a sulfone-based electrolyte containing 1 mol L' of
lithium difluoro (oxalate) borate, the electrochemical window of the
lithium-ion battery electrolyte can be increased to 4.63 V. Moreover,
this addition considerably enhances the thermal stability of the elec-
trolyte.
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Abstract

Sodium-ion batteries (SIBs) are emerging as a possible substitute for lithium-ion batteries (LIBs) in low-cost and
large-scale electrochemical energy storage systems owing to the lack of lithium resources. The properties of SIBs
are correlated to the electrode materials, while the performance of electrode materials is significantly affected by
the morphologies. In recent years, several kinds of anode materials involving carbon-based anodes, titanium-based
anodes, conversion anodes, alloy-based anodes, and organic anodes have been systematically researched to
develop high-performance SIBs. Nanostructures have huge specific surface areas and short ion diffusion pathways.
However, the excessive solid electrolyte interface film and worse thermodynamic stability hinder the application of
nanomaterials in SIBs. Thus, the strategies for constructing three-dimensional (3D) architectures have been
developed to compensate for the flaws of nanomaterials. This review summarizes recent achievements in 3D
architectures, including hollow structures, core-shell structures, yolk-shell structures, porous structures, and self-
assembled nano/micro-structures, and discusses the relationship between the 3D architectures and sodium
storage properties. Notably, the intention of constructing 3D architectures is to improve materials performance by
integrating the benefits of various structures and components. The development of 3D architecture construction
strategies will be essential to future SIB applications.

Keywords: Sodium-ion batteries, anode materials, three-dimensional architectures, nanostructure, microstructure
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
By International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing,
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as
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CERTIFICATE OF RECOGNITION |
We highly appreciate the contribution of

Yu Li

for giving an invited lecture at
2023(17th) International Forum on
Li Battery Technology & Industrial Development
Shenzhen, China
Nov.24-26, 2023

A oy
Liquan Chen, Professor Feng Wu, Professor
Originator of the Forum President of the Forum
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